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a b s t r a c t

We develop a Eulerian model for a particle suspension in fully developed turbulent liquid in a horizontal
pipe. Virtual mass effects and hydrodynamic interactions are accounted for by an extension of the kinetic
theory of Reeks and Swailes.

The model input is provided by the fluid–turbulence statistics measured using PIV. The model output is
compared to PTV data in terms of concentration and particle kinetic stresses. We use water as carrier
fluid, and polystyrene particles of diameter 950 lm. The flow Reynolds numbers are 43,000, 64,000
and 115,000, with corresponding particle Stokes numbers (in terms of the turbulence timescale seen
by the particles) of 1.3, 2.5 and 3.0.

We find that the radial component of the particle kinetic stress controls the radial diffusivity and the
scale height of the concentration profile. It is shown that the axial and radial normal stresses are larger
than the corresponding fluid stresses, mainly due to the virtual mass force. A model for hydrodynamic
(long-range) interaction between the particles is invoked to account for the radial normal stress profile.
As has been found previously in gas–solid flow, this interaction serves to redistribute the axial normal
stress to the radial normal stress. The transport of kinetic stress is insignificant, leading to local relations
between particle and fluid stresses, and a local particle diffusivity. The axial normal stress induced by the
mean velocity shear is small compared to the virtual mass contribution.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Background

The transport of fluid droplets, bubbles or solid particles in a
turbulent carrier fluid is a challenging topic in multiphase pipe
flow. Three common subgroups of such flows are droplets sus-
pended in gas, droplets suspended in another fluid (dispersions)
and solid particles suspended in a liquid (suspensions). Two major
challenges in the accompanying modelling effort are to predict the
distribution of the dispersed phase in inhomogeneous turbulence,
and how the carrier fluid turbulence is affected. A central issue in
the modelling effort is how to treat the boundary conditions. These
depend on the specific problem at hand, e.g., entrainment of drop-
lets into the carrier fluid or particle–particle/wall–particle
interactions.

In an accompanying paper, Skartlien (2009) addresses the mod-
elling of droplets in a dense gas flow representative of conditions in
pipelines. In the current paper, we discuss the modelling of solid
particles suspended in a turbulent liquid. This setting is chosen
to enable a more fundamental experimental and theoretical study
ll rights reserved.
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of carrier fluid turbulence and the effect on particle dynamics. Fur-
thermore, some of the experimental difficulties associated with
turbulence measurements in droplet laden gas–liquid pipe flow
at high Reynolds numbers are then circumvented. These difficul-
ties should however decrease for lower bulk velocity. In the droplet
model of Skartlien (2009), the particle kinetic theory developed at
the University of Newcastle by Reeks (1992, 1993), Swailes et al.
(1998) was adopted.

In the current work, we extend this theory to account for the
added mass effect that occurs for solid particles (also for bubbles
and fluid droplets) suspended in a liquid, provided that the parti-
cle/carrier fluid material density ratio is of order unity or smaller.
This is the first time the added mass effect has been addressed in
the context of pdf equations and the associated closure laws in
the accompanying continuum equations.

The added mass effect introduces additional hydrodynamic
forcing on the particles and is a source of extra dispersion/turbu-
lent diffusion with larger effects for smaller material density ratio.
The current experimental campaign has enabled us to test the
model ingredients and assumptions, and the subsequent turbu-
lence data have provided the required input to the model. Drazen
and Jensen (in preparation) present the current experimental work
in more detail. The data were obtained by a combination of Particle
Image Velocimetry (PIV) and Tracking Velocimetry (PTV), using a

http://dx.doi.org/10.1016/j.ijmultiphaseflow.2009.07.001
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high-speed digital camera and a dual pulsed laser to enable simul-
taneous measurements of the carrier fluid velocity and particle
motions. We will give a brief overview of the experiments below.

Recent experimental work in the literature has focused on tur-
bulence modification. Kiger and Pan (2000) used glass beads (with
diameter 195 lm) suspended in turbulent channel flow with
water. Wu et al. (2006) used polythene spheres with diameter 60
and 110 lm, in air flow. Both authors found turbulence augmenta-
tion even at low mass loadings less than or equal to 10�3. In the
current dataset, Drazen and Jensen (2007, in preparation) found
significant turbulence enhancement ð� 20%Þ of the carrier fluid
with polystyrene particles in water at a volume fraction of
� 10�3. Gore and Crowe (1989) discuss the effect of particle size
on turbulence modulation, while Hetsroni (1989) discusses the
dependency on particle Reynolds number. A general trend is that
larger particles and particle Reynolds numbers tend to augment
turbulence, while smaller particles tend to suppress turbulence.
More theoretical studies that attempt to explain the modulation
phenomenon in more detail can be found in Kenning and Crowe
(1997), Crowe (2000) and Poelma and Ooms (2006). Many authors
have also used DNS to analyze turbulence modulation (e.g., Ahmed
and Elghobashi, 2000; Ferrante and Elghobashi, 2003). We will also
focus on the modelling of turbulence modification in an upcoming
paper, using the current dataset.

In this paper, we will not focus on the modification of turbu-
lence, but consider the measured turbulence profiles as given input
to the suspension model. The novelty of the current work is in the
combination of PIV/PTV data with the kinetic model, accounting
for both the added mass and drag-force. We adopt the kinetic the-
ory of Reeks (1992, 1993), Swailes et al. (1998), Hyland et al.
(1999) for a particle suspension in turbulent fluid. Recent develop-
ments can be found in Reeks (2005), in particular with respect to
the requirement of a ‘‘well mixed” homogeneous distribution of
passive tracer particles in incompressible carrier fluid. This kinetic
approach provides the Eulerian mass, momentum and kinetic
stress equations for the particulate phase from the given equation
of motion for a single particle (i.e., from ‘‘first principles”). As a bo-
nus, the dispersion coefficients and coupling terms to the carrier
fluid follow automatically in the form of time integrals over the
particle paths.1 For the purpose of application, we need to intro-
duce suitable approximations in order to resolve the time integrals
into simple algebraic expressions in terms of fluid–turbulence
stresses and correlation times. A central point in the current paper
is to evaluate and test these approximations.

The PIV and PTV data are used to calculate statistical estimates
of the exact force correlation functions that control the dispersion
tensors. These results are used to evaluate the approximate disper-
sion tensors that are adopted in the model, where the correlation
functions are replaced by simple exponential forms with character-
istic correlation times. The fluid–turbulence data are taken as input
to the model, and the model output is compared to measured pro-
files of particle concentration and kinetic stress.

More ad hoc types of closure relations for the dispersion coeffi-
cients must be invoked in models based on Reynolds averaged
equations for the particulate phase (e.g., Young and Leeming,
1997; Kataoka and Serizawa, 1989; Elghobashi and Abou-Arab,
1983), or ‘‘k–�” approaches (e.g., Wang et al., 1997 and the model-
ling reviewed by Lightstone and Hodgson, 2004). Other Eulerian
formulations that are based on kinetic theory similar to that of
Reeks and Swailes, are due to Simonin (2000), Zaichik and Alip-
chenkov (2005). Caraman et al. (2003) applied Simonin’s modelling
approach to analyze gas–solids flow, including particle collisions.
1 The general integrals provide exact closures for the dispersion coefficients if the
turbulent force acting on the particles is Gaussian. The dispersion tensors are
therefore approximate in non-Gaussian cases, such as in near-wall regions.
In the original version of the kinetic theory (Reeks, 1992), a di-
lute suspension is considered where the particles do not interact.
In the current work, we extend the Eulerian equations to account
for particle–particle hydrodynamic interactions. This is imple-
mented by adopting a collisional term in the stress equations, fol-
lowing Simonin (2000) and Caraman et al. (2003). Close range
electrostatic particle–particle interactions that may occur in parti-
cle beds and dense suspensions are not accounted for in the cur-
rent model.

1.2. Overview of the experiments

A series of experiments were conducted in the Hydrodynamics
Laboratory at the University of Oslo to provide support for the
modelling work. A detailed description of the experimental work
is found in Drazen and Jensen (in preparation), while an additional
description of the experimental work with a focus on turbulence
enhancement can be found in Drazen and Jensen (2007). The aim
of the experiments was to simultaneously measure the properties
of both phases in a solid–liquid pipe flow. The facility consists of a
50 mm ID perspex pipe with a length of 30 m (Fig. 1). At one end of
the pipe there are separation tanks with a set of ball valves through
which the particulate phase was introduced into the flow via a
Venturi. The solid phase consisted of 950 lm polystyrene beads
ðqp ¼ 1:05 g cm�3Þ while the liquid phase was water. The mean
volume fraction of particles was U � 0:003.

Data were collected over pipe Reynolds numbers ranging from
40,000 to 115,000. The images were recorded using a high-speed
camera capable of recording up to 2000 fps at 1024 � 1024 pixels,
with a faster rate using reduced resolution. The particulate and car-
rier phases were separated using a median filtering technique
based on the work of Kiger and Pan (2000). After separation, pro-
cessing of the velocity data and particle positions was performed
using Digiflow, a commercially available software package from
Dalziel Research Partners.

Both the local fluid velocity and fluid acceleration along the par-
ticle tracks are needed to test the adopted dispersion coefficients in
the Eulerian equations. To compute the fluid acceleration the tech-
nique of Jensen and Pedersen (2004) was used, yielding the total
derivative of the fluid velocity, Du=Dt ¼ @u=@t þ u � ru. Individual
particle tracks were generated from the particle position data re-
turned by Digiflow, and the fluid velocity and acceleration values
were interpolated onto the particle tracks.

The paper starts in Section 2 with a derivation of the Eulerian
equations, with account for particle–particle interactions and tur-
Fig. 1. Simplified schematic of the pipe flow facility at the Hydrodynamics
Laboratory at the University of Oslo. The arrows denote the direction of flow.
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bulent drag and added mass forces. In Section 4 we discuss the
fluid–turbulence parameters that are extracted from the PIV/PTV
data in order to provide the necessary model input. The model re-
sults with regard to particle stress and concentration profiles, are
summarized in Section 5. The discussion and conclusion follow in
Section 6.

2. The particle equation of motion

2.1. Drag and added mass forces

Maxey and Riley (1983) derived the equation of motion (EOM)
for a particle in a fluid in the limit of low particle Reynolds number
ðRep � 1Þ. We will neglect history effects and the Faxen curvature
effect, and adopt the following EOM:

mp _v¼mp

ŝp
ðu�vÞþðmp�mf Þgþmf

Du
Dt
�1

2
mf _v�Du

Dt

� �
þ fc; ð1Þ

where v is the particle velocity. We assume that this equation holds
also for higher Reynolds numbers (larger than unity), although an
additional Saffman-type lift force depending on local fluid vorticity
might be relevant. The particle diameter is d ¼ 950 lm;Vp ¼
4=3pðd=2Þ3 is the particle volume, mp ¼ qpVp is the particle mass,
where qp ¼ 1:05 g=cm3; mf ¼ qf Vp is the fluid mass displaced by
the particle (where for water qf ¼ 1:0 g=cm3). The fluid velocity
evaluated at the particle position is u, and g is gravity. The particle
relaxation time ŝpðu;vÞ depends on the local drag coefficient and
the local particle and fluid velocities. Du=Dt is the fluid acceleration
evaluated at the particle position.

The ‘‘added mass term” is

�1
2

mf _v � Du
Dt

� �
ð2Þ

and

mf
Du
Dt

accounts for viscous stress and pressure gradients in the fluid, act-
ing on the particle surface. Auton et al. (1988) have shown that the
added mass force on a sphere should be expressed in the form given
in (2). The force due to hydrodynamic interaction is included for-
mally via the force fc that accounts for the perturbations due to
the fluid velocity field induced by nearby particles. We will discuss
this force in more detail below.

For adaption to the kinetic theory, we recast the EOM on the
more convenient form

_v ¼ 1
sp
ðu� vÞ þ ge þ a

Du
Dt
þ C ð3Þ

with the following definitions:

sp ¼ ŝpðu;vÞ 1þ 1
2

qf

qp

 !
;

ge ¼ g
1� qf

qp

1þ 1
2

qf

qp

0
@

1
A;

a ¼
3
2

qf

qp

1þ 1
2

qf

qp

;

C ¼ fc

mp 1þ 1
2

qf

qp

� � :
These relations account for the ‘‘trivial” added mass effects. The
”non-trivial” part is due to the effect of the fluid acceleration on
the particle diffusivity, as shown in Section 3.4.
The relaxation time ŝpðu;vÞ is a local, stochastic quantity in turbu-
lent flow. The current form of the kinetic theory requires that the par-
ticle force is proportional to the fluid velocity (for drag) or to the fluid
acceleration (for the added mass effect). Thus, a constant relaxation
time is required. We will therefore replace ŝp with a relaxation time
accounting for a characteristic particle Reynolds number Rep,

ðspÞRep
¼ 4

3
qp

qf

d2
p

mRepCD
; ð4Þ

Rep ¼
d ju� vj

m
; ð5Þ

CD ¼
24
Rep

1þ 0:15Re0:687
p

� �
for Rep 6 1000; ð6Þ

CD ¼ 0:44 for Rep > 1000; ð7Þ

where m is the kinematic viscosity of the fluid (for water
m ¼ 10�6 m2=s), and ju� vj is a characteristic average slip velocity
along the particle paths. The correlation for the drag coefficient
CD, is in a standard form (e.g., Sommerfeld, 2003). We will not ac-
count for any modification due to turbulence of the ambient fluid.
The relaxation time reduces to the Stokesian value

ðspÞs ¼ ðqp=qf Þd
2
=ð18mÞ

for Rep ! 0, which is generally larger than ðspÞRep
. The final relaxa-

tion time we adopt, that is corrected for added mass, becomes

sp ¼ ðspÞRep
1þ 1

2
qf

qp

 !
: ð8Þ

In the kinetic description we will frequently use the inverse time
b ¼ s�1

p , which serves as a frictional drag coefficient.

2.2. Measured added mass effects

For the purpose of measuring the degree of correlation between
the measured particle acceleration and the forcing terms, we rear-
range the EOM,

mp þ
1
2

mf

� �
_v|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

ap

¼ mp

ŝp
ðu� vÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

d

þ3
2

mf
Du
Dt|fflfflfflfflffl{zfflfflfflfflffl}

af

þðmp �mf Þg|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
ag

þfc: ð9Þ

We can then calculate correlations between the acceleration and
individual terms on the RHS of the equation. Assuming that the col-
lision and gravitation terms are small, we expect a significant re-
sponse in the cross-correlations hðaf ÞiðapÞii and hdiðapÞii between
equal Cartesian components i.

The first cross-correlation would demonstrate the contribution
from the fluid acceleration or added mass forcing, and the second
will measure the contribution from the drag-force. We will expect
that the hydrodynamic interaction force fc between particles is
more important towards the pipe floor where the concentration
is larger, introducing more noise there in ap. The gravitation intro-
duces a constant offset in ap. Figs. 2 and 3 show cross-correlations
and corresponding scatterplots for hdxðdvx=dtÞi � hdxðapÞxi and
hDux=Dtðdvx=dtÞi � hðaf ÞxðapÞxi obtained form the experimental
data, for the two larger Reynolds numbers. We will use x for the ax-
ial direction along the pipe, and y for the radial direction normal to
the pipe walls.

We see a non-zero cross-correlation for both terms, with max-
imum correlation at positive time lag Dt > 0, in the sense
hAðtÞBðt þ DtÞi. The noise seen in each scatterplot is due to the data
reduction procedure for the PIV and PTV data, the interaction force
fc , and the terms in the EOM that are not included in the specific
correlation at hand. The sloping lines in the scatterplots show an
estimate of the principal axis. The ratio between the correlation
maxima and principal axes, suggest that the fluid acceleration term



Fig. 2. Correlation between particle acceleration and force terms in the x-direction for Re ¼ 63;900. The left panels show the cross correlation, and the right panels the
scatterplot at the time lag of maximum correlation. The upper panels show hdxðdvx=dtÞi and the bottom panels hDux=Dtðdvx=dtÞi. The sloping lines in the scatterplots show
estimates of the principal axis. The correlation with the acceleration term is about four times larger than the correlation with the drag term, showing that the added mass
effect is significant.
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provides a significantly larger contribution to the particle acceler-
ation than the drag term. For the y-direction (not shown), the
acceleration measurements are subject to more noise, and we can-
not see a clear correlation between particle and fluid accelerations
in the current dataset.

3. The kinetic model

3.1. Kinetic theory for a collisionless, dilute suspension

3.1.1. The PDF-equation and the dispersion tensors
The evolution (in phase space) of the ensemble averaged parti-

cle probability distribution function P ¼ hWðv;x; tÞi is governed by
(e.g., Reeks, 1992, 1993; Hyland et al., 1999)

@tP þ v � rxP þrv � ½ðF� bvÞP� ¼ �rv �J; ð10Þ

where the diffusion current is

J ¼ hfWi: ð11Þ

This equation is analogous to the classical Boltzmann equation (but
now with the collision term replaced by the divergence of the diffu-
sion current). The force components f and F represent the fluctuat-
ing and non-fluctuating fluid forces on the particle respectively
(without collisions). Thus, the force terms in the EOM (3) imply that

f ¼ 1
sp
ðu� huiÞ þ a

Du
Dt
� a

Du
Dt

	 

; ð12Þ

F ¼ ge þ
1
sp
hui þ a

Du
Dt

	 

; ð13Þ

where brackets denote ensemble averaging. W is the distribution
function corresponding to a single realization of f.

For a Gaussian f, there is an exact closure relation for the diffu-
sion current (Reeks, 1992, 1993),

J k ¼ �@vjðljkPÞ � @xjðkjkPÞ � ckP ð14Þ

in terms of three given dispersion tensors, ljk; kjk and ck which are
functions of ðv;x; tÞ. In the following Eulerian equations we will
need the density weighted averages of the dispersion tensors, e.g.,

kjiðx; tÞ ¼
Z

v
/ðv;x; tÞkjiðv;x; tÞd3v;

/ðv; x; tÞ ¼ Pðv;x; tÞ
q

;

qðx; tÞ ¼
Z

v
Pðv; x; tÞd3v:



Fig. 3. Correlation between particle acceleration and force terms in the x-direction for Re ¼ 115; 000.
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The dispersion tensor kji may also be given in terms of the correla-
tion between the local force fiðx; tÞ and the total displacement Dxj

the particle experiences along its path, before it passes through x
at time t (Reeks, 1992),

�kji ¼ hfiðx; tÞDxjðx; tÞi:

This can be understood in terms of small contributions to the dis-
placement induced by the force on the particle along its path
(sum of small contributions). It is only the recent history, within
the correlation time of the driving force, that will contribute signif-
icantly to the correlation bracket. A similar correlation defines �lji,
but in terms of the total velocity change along the particle path,

�lji ¼ hfiðx; tÞDv jðx; tÞi:

The dispersion vector is given by

�ci ¼ �hð@ jfiðx; tÞÞDxjðx; tÞi;

where summation over j is implied.
The velocity change and displacement is expressed in terms of

Green’s function of the EOM (or the response function). See Appen-
dix C for the derivation of Green’s function with added mass effects
included. We will assume a linear mean shear in the background
fluid, and the response function is then deterministic. The disper-
sion tensors then assume explicit forms directly in terms of the
force correlation functions (e.g., Hyland et al., 1999),2
2 These asymptotic ‘‘long time” values are evaluated by ignoring the initial
conditions.
�kji ¼
Z t

�1
hfiðx; tÞfkðxpðsÞ; sÞiGkjðt � sÞds; ð15Þ

�lji ¼
Z t

�1
hfiðx; tÞfkðxpðsÞ; sÞi _Gkjðt � sÞds; ð16Þ

�ci ¼ �
Z t

�1
h@jðfiðx; tÞÞfkðxpðsÞ; sÞiGkjðt � sÞds: ð17Þ

The only known way to evaluate the dispersion tensors in wall
bounded turbulence, is with the aid of Monte-Carlo simulations
with particle tracking (e.g., Skartlien, 2007,b), or via direct numeri-
cal simulation with particle tracking. If one assumes homogeneous
turbulence with a linear mean shear, these tensors can be calcu-
lated analytically giving a direct relation to the fluid Reynolds stres-
ses. We will adopt this approach in the following as a ‘‘local
approximation”.

3.1.2. Moments and constitutive relations
By taking the first three velocity moments of the PDF-equation,

one obtains the mass, momentum and stress conservation equa-
tions for the particles:

@tqþ @kðq�vkÞ ¼ 0; ð18Þ
qDt �v i þ @kðqv 0kv 0iÞ � qðFi � b�v iÞ ¼ �@kð�kkiqÞ � �ciq; ð19Þ

where Fi is an external force and Dt ¼ @t þ vk@k. Appendix A
discusses the diffusion equation for q, that can be generated from
the momentum equation. The stress equation is (Reeks, 1992;
Swailes et al., 1998; Hyland et al., 1999; Sergeev et al., 2002)



3 The ‘‘effective volume fraction” for interactions scales as ðdh=dÞ3 	 1.
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@tðqv 0iv 0jÞ þ @kðq�vk v 0iv 0jÞ þ @kðqv 0iv 0jv 0kÞ þ 2bqv 0iv 0j
¼ qð�lji þ �lijÞ � qðT ik@k �v j þ T jk@k �v iÞ þRij; ð20Þ

where

T ik ¼ v 0iv 0k þ �kki; ð21Þ
Rij ¼ �@k½qðkkjv 0i þ kkiv 0jÞ� � qðciv 0j þ cjv 0iÞ: ð22Þ

The terms Rij are exactly zero with the models of the dispersion
tensors used in this work (since we will assume they are indepen-
dent of the velocity).

The constitutive relations emerge naturally from the theory.
The particle stress tensor is given by

Tik ¼ qðv 0iv 0k þ �kkiÞ; ð23Þ

and the particle diffusivity tensor is

�ik ¼ spðv 0iv 0k þ �kkiÞ: ð24Þ

The diffusivity depends on particle inertia via sp, the particle kinetic
stress, and also directly on the action of the background fluid via the
dispersion tensor �kki. The dispersion tensor �kki has two contributions
in a wall bounded flow, namely the dispersion induced by the mean
shear in the carrier flow, and the dispersion induced by the carrier
turbulence (Reeks, 1993).

For the turbulent fluxes that enter in the stress equations, we
apply the Chapman–Enskog closure relation (Swailes et al., 1998;
Zaichik and Alipchenkov, 2005),

v 0iv 0jv 0k ¼ �
1
3
�in@nv 0kv 0j þ �jn@nv 0kv 0i þ �kn@nv 0jv 0i
n o

; ð25Þ

in terms of the local particle diffusivities �ik given in (24). Note that
this approximation serves as the required closure relation for the
hierarchy of moments of the PDF-equation.

3.2. Kinetic stress equation with account for particle–particle
interaction

With collisions, the kinetic PDF-equation (Section 3.1.1) gener-
alizes to

@tP þ v � rxP þrv � ½ðF� bvÞP� ¼ �rv �Jþ ð@tPÞcoll:; ð26Þ

where the diffusion current J ¼ hfWi has the same meaning as be-
fore, with f the force due to turbulence. In the limit of zero fluid
force (infinite relaxation time, b! 0 and J ! 0), we recover the
classical Boltzmann equation.

In order to include collisional effects in the continuum equa-
tions for gas–particle flow, Simonin (2000) applied Grad’s (1949)
theory for rarefied gases where only two-particle interactions are
accounted for. Simonin assumed uncorrelated particle velocities
and elastic collisions as in Boltzmann’s classical work. With these
simplifying assumptions, the work of Jenkins and Richmann
(1985) implies that the collisions only enter in the stress equations.
Thus, the momentum equation (19) is unaltered, while the stress
equation (20) should be replaced by

@tðqv 0iv 0jÞ þ @kðq�vk v 0iv 0jÞ þ @kðqv 0iv 0jv 0kÞ þ 2bqv 0iv 0j
¼ qð�lji þ �lijÞ � qðT ik@k �v j þ T jk@k �v iÞ þ Cij; ð27Þ

where the collisional redistribution term is (Simonin, 2000;
Caraman et al., 2003)

Cij ¼ �q
rc

sc
v 0iv 0j �

2
3

q2
pdij

� �
;

q2
p ¼

1
2

v 0xv 0x þ v 0yv 0y þ v 0zv 0z
� �

:

ð28Þ

Here rc ¼ 4=5 and the mean time between collisions is sc ¼ 1=mc ,
where the collision frequency is
mc ¼ pnd2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16
p

2
3

q2
p

r
;

where n ¼ nðx; y; zÞ is the local particle number density. This model
accounts for the effect that collisions dissipate the particle shear
stress components and drive the normal stresses to equipartition.
That is, the particle stresses become more isotropic, with reduced
shear stress.

In particle–liquid flow, collisions are replaced by hydrodynamic
interactions involving fluid dynamic effects upon close encounter
between two or more particles. We will model the interactions
by adopting Simonin’s expressions for elastic collisions, but replace
the particle cross section or diameter d by a larger cross section gi-
ven by a characteristic hydrodynamic length scale, dh > d. The col-
lision frequency with interaction is then defined as

ðmcÞhyd ¼ pnd2
h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16
p

2
3

q2
p

r
; ð29Þ

adopting sc ¼ 1=ðmcÞhyd in the stress coupling term Cij.
For Stokes flow, one can show that the velocity perturbation

around a translating sphere in a quiescent liquid scales as d=r (r
is the distance from the particle surface), based on the Oseen ten-
sor and its extension for small but non-zero Rep (Batchelor, 1967).
A reduction of the perturbed velocity in the surrounding fluid to a
20% level, corresponds to r ¼ 5d. We find that dh � 6d yield results
that are comparable to the experimental data, giving a substantial
increase in the collision frequency ½ðmcÞhyd � 36mc�. We expect that
Oseen’s relation is a good approximation for translation in a turbu-
lent fluid, when d is significantly smaller than the Kolmogorov
length.

The importance of collisions/hydrodynamic interaction relative
to that of turbulent forcing can be evaluated from the factor
sp=sc ¼ spðmcÞhyd. For a strictly dilute flow, where collisions can
be neglected, we would require sp=sc � 1. The volume fraction of
particles may not represent the relevant parameter for judging
the importance of interaction, due to long-range hydrodynamic
interaction.3

Finally, it is important to note that the history of the turbulent
force seen by a particle is influenced by collisions in the sense that
the particle path is perturbed by the collisions. The altered particle
path will potentially influence the value of the dispersion tensors
(15)–(17). We will ignore this effect for the time being, but future
research should address the collisional effect on the dispersion
tensors.

3.3. Reduction to fully developed channel flow

The influence of gravity on the concentration profiles is quite
strong (giving exponential profiles to first order), and as a first
approximation one can assume constant particle concentration in
horizontal planes. We therefore adopt channel flow equations to
model the data (which is measured in a vertical plane or laser sheet
through the center of the pipe). The model is then subject to upper
and lower boundary conditions (see Fig. 4).

The PIV field of view covered about 1/2 pipe diameter for the
two larger Reynolds numbers, and about 0.9 diameters for the
smallest Reynolds number. Measured boundary values in the field
of view served as boundary conditions for the model. Two Dirichlet
kinetic stress conditions (upper and lower values) and one Dirich-
let condition for the lower particle concentration, was taken from
the data. We will later see that the kinetic stress equations reduce
to local relations, such that the kinetic stress is insensitive to the
boundary conditions.



Fig. 4. (upper figure) Pipe cross section with schematic particle concentration
contours. As first approximation one can assume constant particle concentration in
horizontal planes, due to gravity. The PIV measurement plane is shown as a grey
strip. (lower figure) Channel flow geometry adopted for the model. The two stress
boundary conditions (upper and lower boundary), and one density boundary
condition (lower boundary) are indicated. The PIV measurement area is indicated,
with the accompanying model boundaries.
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We will use the term ‘‘axial direction” for x (the direction of the
mean flow), and ‘‘radial direction” for y (the wall normal direction),
when we compare the data to model results. The spanwise direc-
tion in the model is z (corresponding to the azimuthal direction
in the pipe). Gravity acts in the negative y-direction, perpendicular
to the boundaries (see Fig. 4).

3.3.1. Components of the governing equations
In fully developed horizontal channel flow, @xð::Þ ¼ @zð::Þ ¼ 0

and @tð::Þ ¼ 0 for ensemble averaged quantities in general. Further-
more, �vy ¼ �vz ¼ 0. The mean force components on the particles per
unit mass are

Fy ¼ �ge þ a@yhu0yu0yi; ð30Þ
Fx ¼ bhuxi þ a@yhu0xu0yi ’ bhuxi � a@yðmt@yhuxiÞ; ð31Þ
Fz ¼ 0; ð32Þ

for the wall normal, streamwise and spanwise components, respec-
tively, and mt is the eddy viscosity. The term @yhu0yu0yi is the gradient
of the turbulence dynamic pressure per unit mass. The components
of the momentum equation become

@yðqv 0yv 0yÞ þ qðge � a@yhu0yu0yiÞ ¼ �@yð�kyyqÞ � �cyq;

@yðqv 0yv 0xÞ þ q½bð�vx � huxiÞ � a@yhu0xu0yi� ¼ �@yð�kyxqÞ � �cxq; ð33Þ
@yðqv 0yv 0zÞ ¼ �@yð�kyzqÞ � �czq:
Only the vertical component (33) is needed to solve for the concen-
tration profile qðyÞ, with given �kyy; �cy, and a solution for the normal
stress v 0yv 0y. The formal solution for the concentration profile is

qðyÞ ¼ qð0Þ �yyð0Þ
�yyðyÞ

exp �sp

Z y

0

ge � a@yhu0yu0yi þ �cy

�yy
df

� 
; ð34Þ

where �yy is the normal component of the particle diffusivity (24).
For the special case of homogeneous turbulence, �yy is constant
and �cy ¼ 0, such that an exponential profile is recovered.

The wall normal and axial components of the stress equation
are, respectively,

@yðqv 0yv 0yv 0yÞþ2bqv 0yv 0y ¼2q�lyy�q
rc

sc
v 0yv 0y�

2
3

q2
p

� �
; ð35Þ

@yðqv 0xv 0xv 0yÞþ2bqv 0xv 0x¼2q�lxx�2qT xy@y �vx�q
rc

sc
v 0xv 0x�

2
3

q2
p

� �
: ð36Þ

The wall normal stress is needed for (33) (or the concentration pro-
file 34), and for comparison with the stress data. The axial stress is
calculated solely for comparison with the axial stress data. The
stress equations are coupled via the collision term, but we will solve
each of them independently, using measured data for the stress
component we are not solving for. Likewise, we will use the mea-
sured shear stress in the calculation of T xy, rather than solving
the shear stress equation.

For the axial stress v 0xv 0x, the mean shear @y �vx acts as an internal
source. The collisional terms may act as sources or sinks. For air–
particle flow in pipes or jets, it has been reported (e.g., Caraman
et al., 2003) that collisions provide a sink for the axial stress and
a source for the two other normal components. In the current case,
the shear induced source for the axial stress is not important, but
the stress redistribution effect due to hydrodynamic interaction
needs to be included to match the measurements.

3.3.2. Local approximation of the stress equations
When the turbulent flux terms can be neglected, the set of

stress equations above reduce to the local algebraic relations

2bqv 0yv 0y ¼ 2q�lyy � q
rc

sc
v 0yv 0y �

2
3

q2
p

� �
; ð37Þ

2bqv 0xv 0x ¼ 2q�lxx � 2qT xy@y �vx � q
rc

sc
v 0xv 0x �

2
3

q2
p

� �
: ð38Þ

In the current case, these local stress equations hold, as we will see
below. This simplifies the problem considerably relative to gas–sol-
ids or gas–droplet flow, since we do not need to specify stress
boundary conditions, and solve the differential equations. The tur-
bulent flux is significant for large Stokes number gas–particle flow,
and we must then revert to the coupled set of differential equations
(35) and (36).

3.4. Local dispersion tensors with added mass effects

3.4.1. Correlation functions for the particle forces
A number of dispersion tensor components are required in the

momentum and stress equations. These are in general given by
the integrals (15)–(17), were the two-point temporal correlation
function of the fluctuating part of the fluid force is required. With
the definitions

fi ¼ di þ ai; ð39Þ
di ¼ bu0i; ð40Þ

ai ¼ a
Du
Dt

� �0
i
; ð41Þ

the desired two-point correlation function can be expressed as

hfiðx;tÞfkðxpðsÞ;sÞi¼hdiðx;tÞdkðxpðsÞ;sÞiþhaiðx;tÞakðxpðsÞ;sÞi
þ hdiðx;tÞakðxpðsÞ;sÞiþhaiðx; tÞdkðxpðsÞ;sÞi
� �

: ð42Þ



4 The PIV data window spans only about 1/2 of the pipe diameter for the two
largest Reynolds numbers, so an average value seems a reasonable representation.
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Brackets mean ensemble averaging over all xpðsÞ for fixed s < t
belonging to paths converging to x at t (thus, brackets mean averag-
ing over a set of different spatial positions xp). We will use the com-
pact notation

Rmn
ik ðy; t; sÞ ¼ hmiðx; tÞnkðxpðsÞ; sÞi ð43Þ

for the individual contributions, replacing (42) with

hfifki ¼
X

m

X
n

Rmn
ik ¼ Rdd

ik þ Rad
ik þ Rda

ik þ Raa
ik : ð44Þ

Here, m and n refers to force type (d or a) and i; k refers to coordi-
nate directions (x or y in our case).

We assume that the two-point correlations Rmn
ij can be ex-

pressed in terms of a time dependent exponential decay of the cor-
responding local single-point correlation. In the case of channel
flow, the ‘‘locally homogeneous approximation” is

Rmn
ik ðy; t; sÞ ¼ Qmn

ik ðyÞe�ðt�sÞ=smn
ik
ðyÞ; ð45Þ

where the local force correlations are

Q mn
ik ðyÞ ¼ hmiðyÞnkðyÞi: ð46Þ

We calculate Rmn
ik ðy; t; sÞ from the combined PTV/PIV data. These cor-

relation functions are then fitted with exponentials to calculate the
timescales smn

ik ðyÞ. The different smn
ik may not vary very much over

different combinations of i and k, so we replace this tensor with a
characteristic scalar value smn when appropriate,

Rmn
ik ðy; t; sÞ ’ Qmn

ik ðyÞe�ðt�sÞ=smnðyÞ: ð47Þ

We will use the full profiles Qmn
ik ðyÞ, but single characteristic values

smn for the timescales, as input to the model.

3.4.2. Dispersion tensor components
Only the components that we need for the subsequent calcula-

tions are given below. Appendix B provides the necessary details for
the dispersion tensor calculations, and explains the approximations
that are adopted. The �l components are given by the scaling in
(D.2), once the �k-components are calculated. The �k-components that
are needed in the wall normal momentum and stress equations are

ð�kyyÞdd ¼ Q dd
yy

s2

1þ bs� aC 00yys2
; ð48Þ

ð�kyyÞad ’ 0; ð49Þ

ð�kyyÞaa ¼ Q aa
yy

s2
aa

1þ bsaa � aC 00yys2
aa

; ð50Þ

The streamwise components that are needed in the axial stress
equation are

ð�kxxÞdd ¼
s2

1þ bs
Q dd

xx þ B1Q dd
xy

s2

1þ bs� aC 0yys2

 !
; ð51Þ

ð�kxxÞad ¼
s2

ad

1þ bsad
Q ad

xx þ B1Qad
xy

s2
ad

1þ bsad � aC 00yys2
ad

 !
; ð52Þ

ð�kxxÞaa ¼
s2

aa

1þ bsaa
Q aa

xx þ B1Qaa
xy

s2
aa

1þ bsaa � aC 00yys2
aa

 !
: ð53Þ

And the ‘‘shear components” that are needed in the axial stress
equation are

ð�kyxÞdd ¼ Q dd
xy

s2

1þ bs� aC 00yys2
; ð54Þ

ð�kyxÞad ¼ Q ad
xy

s2
ad

1þ bsad � aC 00yys2
ad

; ð55Þ

ð�kyxÞaa ¼ Q aa
xy

s2
ad

1þ bsaa � aC 00yys2
aa

: ð56Þ
The correlation tensors in (48)–(56) are given by

Qdd
yy ¼ b2hu0yu0yi; ð57Þ

Qdd
xx ¼ b2hu0xu0xi; ð58Þ

Qdd
xy ¼ b2hu0xu0yi; ð59Þ

Qaa
yy ¼ hayayi; ð60Þ

Qaa
xx ¼ haxaxi; ð61Þ

Qaa
xy ¼ haxayi; ð62Þ

Qad
xx ’ 2abhu0xu0yi@yhuxi; ð63Þ

Qad
xy ’ abhu0yu0yi@yhuxi: ð64Þ

The approximations leading to the last two terms are explained in
Appendix B. The auxiliary variables in (48)–(56) depend on added
mass (via fluid stress gradients) and drag (via the mean shear),

B1 ¼ b@yhuxi þ aC00xy;

C 00xy ¼ @
2
yhu0xu0yi;

C 00yy ¼ @
2
yhu0yu0yi:
4. Model parameters extracted from the data

The required model input is Qmn
ij ðyÞ and the corresponding time-

scales sdd; sad and saa. These parameters are taken from the data.
The relaxation time sp and the effective gravity ge are determined
by the fluid viscosity and density, the particle material density and
particle Reynolds number. The latter is estimated from the dataset
to calibrate the average drag coefficient.

4.1. Particle relaxation times

The average values of Rep based on the time averaged velocity
difference ju� vj, for flow Reynolds numbers Re ¼ ½43;000;
64;000; 115;000�, were Rep ¼ ½65;130;180� respectively. This is
below the vortex shedding threshold of Rep ’ 300 (Johnson and Pa-
tel, 1999) for translation in quiescent fluid, but well beyond the
Stokes limit for the drag term. A relatively large standard deviation
in the slip velocity (up to � 70%) suggests that the particles shed
vortices intermittently.

4.2. Measured drag and acceleration correlation times seen from
particles

The dominating sources for the radial and axial normal kinetic
stresses are associated with Rdd

yy and Rdd
xx respectively, and in partic-

ular the added mass terms Raa
yy and Raa

xx . Figs. 5–8 show these corre-
lation functions, at a certain position in the pipe. The timescales for
Rdd

yy and Rdd
xx are estimated directly from the data using exponential

fits, and by averaging over all radial positions.4

The measured timescales for Raa
yy and Raa

xx are comparable to the
sampling interval used (the sampling frequency was 2, 4 and
6 kHz, respectively, for the three Reynolds numbers, giving the
sampling intervals Dt ¼ 0:5, 0.25 and 0.16 ms). This resolution lim-
itation is seen in Figs. 7 and 8. We will therefore treat the correla-
tion times associated with the ‘‘aa” terms as tuning parameters,
since they are not readily available from the data. We will also dis-
tinguish between the x- and y-direction for these correlation times,
in order to obtain a reasonable fit to the magnitude of the mea-
sured particle kinetic stresses. Table 1 summarizes the timescales
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Fig. 5. Measured correlation function Rdd
yy for Re ¼ 63;900. The time axis is in units

of seconds. The correlation time is estimated from an exponential fit.
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Fig. 6. Measured correlation function Rdd
xx for Re ¼ 63;900. The time axis is in units

of seconds. The correlation time is estimated from an exponential fit.
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Fig. 7. Measured correlation function Raa
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here unresolved with the sampling interval of Dt ¼ 0:25 ms.

Table 1
The upper rows show the relaxation time sp corrected for the particle Reynolds
number Rep and added mass (Eq. (8)), the Stokes number based on s ¼ sdd , the
Eulerian correlation time sf estimated from the eddy viscosity and the radial fluid
stress, and sE the Eulerian correlation time of the radial fluid velocity component. The
lower rows show the characteristic correlation times as seen by the particles. The
correlation time for the fluid velocity is s ¼ sdd , the cross correlation time between
the fluid acceleration and the fluid velocity is sad . The two correlation times for the
fluid acceleration, ðsaaÞyy and ðsaaÞxx , are tuned parameters since the correlation
functions were under-resolved.

Re sp (ms) Rep St ¼ sp=s sf (ms) sE (ms)

43,000 19.2 65 1.28 80 3.1
63,900 12.7 130 2.54 65 1.8

115,000 9.0 180 3.03 35 0.9

Re s (ms) sad (s) ðsaaÞyy (s) ðsaaÞxx (s)

43,000 15 0:10 0:10 0:10
63,900 5 0:12 0:12 0:24

115,000 3 0:06 0:06 0:24
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used as model input, in addition to estimates of Eulerian timescales
of the turbulence.

The Stokes number is defined by the ratio of the particle inertial
relaxation time to the drag correlation time. The Stokes numbers
for all Reynolds numbers (Table 1) are larger than unity which
indicates that the polystyrene particles cannot be treated as pas-
sive tracer particles, even though the density contrast between
fluid and particles is very small.

4.3. Fluid timescales compared to sdd

The particle material density is a few percent larger than for
water, such that the settling velocity is small compared to the char-
acteristic turbulent velocity. Thus, the Csanady/crossing trajecto-
ries effect can be ignored. We expect that the fluid velocity
correlation time sdd seen by the particles is still reduced compared
to the Lagrangian correlation time of the fluid sL (not measured),
due to the added mass force and particle–particle interactions.
The Eulerian integral timescale sE for the radial velocity is also gi-
ven in Table 1. This is a factor 3–5 smaller than sdd.
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Another timescale that is frequently used is the eddy turnover
time defined by the scalar diffusivity. Skartlien (2007, 2009)
showed that the wall normal particle diffusivity for vanishing
Stokes number, and for drag only, limits to

ð�yyÞh ¼ hu0yu0yis

when the locally homogeneous form of the dispersion tensor �kyy is
invoked. If we impose consistency between the eddy diffusivity and
the wall normal particle diffusivity for vanishing relaxation time,
we obtain the following eddy turnover time:

sf ¼ mT=hu0yu0yi; ð65Þ

where mT is the fluid eddy viscosity.
The eddy turnover time (given in Table 1) is about an order of

magnitude larger than sdd. Thus, the needed correlation time sdd

cannot be estimated by the eddy turnover time sf in the current
setting, where the added mass effect is important. A better approx-
imation is the Eulerian integral timescale sE, although this is a fac-
tor 3–5 smaller than sdd. The Lagrangian correlation time for the
fluid, sL may be a better estimate.

4.4. Measured local force correlation tensors Qmn
ij

We use the relations given in (57)–(64) on the dataset, to eval-
uate the local tensor components Qmn

ij ðyÞ. These correspond to the
value of Rmn

ij at zero time lag. Vertical (or radial) profiles of a few
measured correlation tensors for Re = 63,900 are given in Figs. 9
and 10, respectively. For the acceleration components Qaa

xx and
Qaa

yy we adopt single characteristic values (average values over
the pipe diameter) as the model input.

It is potentially convenient to have a relation between the accel-
eration components and the Reynolds stresses, since the accelera-
tion components are not usually available in common modelling
situations. We therefore define the following Eulerian acceleration
timescales:

Q aa
ii ¼ haiaii 
 a2 hu0iu0ii

ŝ2
i

; ð66Þ

Q aa
xy ¼ haxayi 
 a2 hu

0
xu0yi
ŝ2

xy
: ð67Þ

These acceleration timescales are given in terms of the drag timescale
sdd in Table 2, together with the characteristic values of Qaa

ii . Further
research may be necessary to incorporate more general relations be-
tween the Reynolds stresses and the acceleration statistics.

4.5. Collision frequency

We will now assess the importance of hydrodynamic interac-
tions by invoking our simple collision model. The spanwise normal
stress (in the line of sight of the camera used for PIV) is not avail-
able in the current data. We follow Caraman et al. (2003), and as-
sume v 0zv 0z ’ v 0yv 0y. The collision frequency is then modelled as

ðmcÞhyd ¼ pnd2
h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16
p

1
3

v 0xv 0x þ 2v 0yv 0y
� �r

;

where n is the particle number density and dh is the effective hydro-
dynamic interaction cross section.

The importance of particle–particle interactions relative to tur-
bulent fluid forcing can be evaluated by comparing the collision
time to the particle relaxation time. For a strictly dilute flow we
would require spðmcÞhyd � 1, i.e., that the particle relaxes to the
fluid motion before the next collision or interaction event. Fig. 11
shows in contrast that spðmcÞhyd cannot be considered small, even



Table 2
The Eulerian characteristic timescales of the fluid acceleration and measured
characteristic values for Q aa

ii .

Re Qaa
yy ðm2=s4Þ Qaa

xx ðm2=s4Þ ŝy ŝx ŝxy

43,000 50 250 0:2s 0:2s 0:3s
63,900 300 1500 0:3s 0:3s 0:5s
115,000 2500 9000 0:3s 0:3s 0:6s
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Fig. 10. Correlation functions Qaa
yyðyÞ; Qaa

xx ðyÞ and Qaa
xyðyÞ for Re ¼ 63;900.

Fig. 11. Estimated collision factor spmc for Re = 43,000 and Re = 115,000, showing
that the flow is not dilute, in particular towards the pipe floor.
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though the average volume fraction of particles is of the order 10�3.
We can therefore conclude that the flow is not strictly dilute.
5. Model results

5.1. Concentration profiles using the measured particle kinetic stress

First, we solve (33) or (34) using a linear fit to the measured ra-
dial particle normal stress for hv 0yv 0yi and the local approximation
for the dispersion tensors. With the PSA approximation for
�cy ’ �@y

�kyy of Skartlien (2007) to ensure a well mixed condition
in the limit of passive tracers, (33) reduces to

0 ¼ ��yy@yq� qsp@yv 0yv 0y � qspðge � a@yhu0yu0yiÞ; ð68Þ

where ��yy@yq is the diffusive turbulent mass flux density, the wall
normal diffusivity is �yy ¼ spðhv 0yv 0yi þ �kyyÞ and �qsp@yv 0yv 0y is the
turbophoretic mass flux density. The diffusivity and turbophoretic
flux is calculated using the measured kinetic stress hv 0yv 0yi. The
effective gravitational flux is �qspðge � a@yhu0yu0yiÞ, corrected for
turbulence pressure. Figs. 12–14 show the results for all Reynolds
numbers.



Fig. 12. Modelled concentration and radial diffusivity for Re = 43,000. The diffusivity is here based on the measured normal stress and the local dispersion tensor. (left panel)
Particle density profile: (crosses) data; (thick line) model; (straight dash-dotted line) exponential profile using the mean diffusivity in the scale height z0 ¼ ��yy=VT . The profiles
are normalized to the boundary value. (middle panel) Particle diffusivity: (full thick line) �yy ¼ sphv 0yv 0yi þ sp

�kyy; (dash-dotted thick line) sphv 0yv 0yi; (dash-triple dotted line)
sp

�kyy . The dotted line is the eddy viscosity (approximating the eddy diffusivity). (right panel) Particle radial stress hv 0yv 0yi: The crosses represent the data and the thick full line
is the linear fit.

Fig. 13. Modelled concentration and radial diffusivity for Re = 63,900. The key is the same as in Fig. 12.

Fig. 14. Modelled concentration and radial diffusivity for Re = 115,000. The key is the same as in Fig. 12.
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We conclude that (68) seems to be a sufficient governing equa-
tion for the concentration profiles (left panels), although some
deviations are evident for the larger and smaller Reynolds num-
bers. The qualitative shape and curvature is captured, reflecting
the variation of the particle diffusivity over the diameter and the
presence of turbophoretic drift. It is worth noting that �cy cancels
the gradient of �kyy within the PSA approximation. This simplifies
the momentum equation considerably.

For all three Reynolds number cases, the normal kinetic stress is
the dominating contributor to the diffusivity (sphv 0yv 0yi in the mid-
dle panels), and not the fluid diffusivity contribution sp

�kyy. We will
see below that the source of kinetic stress is dominated by the
added mass force, via the dispersion tensor component �lyy.

5.2. Particle kinetic stress modeling

We will now calculate the normal stresses from the full stress
equations (35) and (36), rather than using the data. Each equation
is solved by using the measured stress of the other component –
e.g., the wall normal stress equation is solved by using the linear
fit to the measured axial stress as input. This approach is sufficient
in order to test the validity of the governing equations. A fully self-
contained solution can be obtained by solving these equations
simultaneously.
Fig. 15. Modelled normal stresses and concentration for Re = 43,000. (upper left panel) C
the mean diffusivity. (upper right panel) Radial particle diffusivity; full thick line: �yy; da
eddy viscosity. (lower left panel) Radial normal stress v 0yv 0y . The crosses represent the da
given by (37), which is almost indistinguishable from the thick line. The dashed line s
contribution due to �lyy . (Lower right panel) Axial normal stress v 0xv 0x . The crosses represen
approximation (38), the dashed line is the contribution due to the particle–particle inter
shear induced contribution.
The boundary conditions for the stress equations are taken as
the endpoint values of the measured normal stress (also based
on the linear fit). This choice has no large consequence, since the
turbulent flux term (modelled by the Chapman–Enskog closure
relation) is relatively small such that the stress equations are
essentially local. The effects of boundary values are then not prop-
agated very far into the domain (about 0.1 times the domain size).

The modelled concentration, diffusivity and normal stress pro-
files are shown in Figs. 15–17, where both local (thin full lines)
and full solutions (thick line) of the stress are shown. The normal
stresses (both radial and axial) are approximately given by local
values governed by the algebraic relations (37) and (38) (the thin
full line is almost indistinguishable from the thick full line). In or-
der to obtain modeled stresses that are comparable to the mea-
surements (thick full line, lower left panels), the particle
interaction cross section is tuned to dh ’ 6 for all cases.

The slope of the normal stress profile in the lower half of the
cross section (lower left panels) is controlled by the particle inter-
action contribution (dashed line), that transfer axial stress to radial
stress. In the upper half of the cross section, the local stress source
�lyy (dotted line) is larger than the stress redistribution term (for
the two lower Reynolds numbers). The radial stress is therefore
controlled by both particle interaction and the turbulent fluid
forces. Furthermore, �lyy (lower left panels), is dominated by the
rosses: data; thick line: model; straight dash-dotted line: exponential profile using
sh-dotted thick line: spv 0yv 0y and dash-triple dotted line: sp

�kyy . The dotted line is the
ta and the thick full line is the model prediction. The thin full line is the local stress
hows the contribution due to particle–particle interaction. The dotted line is the
t the data and the thick full line is the model prediction. The thin full line is the local

action. The dotted line is the contribution due to �lxx and the dash-dotted line is the



Fig. 16. Modelled normal stresses and concentration for Re = 63,900. The key is the same as in Fig. 15.
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added mass contribution. Recall that this term accounts for the
work done on the particles from all fluid forces.

The source for the axial stress �lxx (lower right panels) is also
dominated by the added mass contribution.

Fig. 18 shows the axial stress for Re = 63,900 without the added
mass forcing, and we conclude that the added mass effect is
responsible for most of the axial stress. The two other Reynolds
numbers show a similar dependency on the added mass force. Par-
ticle–particle interaction and mean shear provide negligible contri-
butions to the axial stress (dashed and dash-dotted lines in the
lower right panels in Figs. 15–17).

Fig. 19 shows the effect of ignoring particle–particle interaction.
The modelled radial stress is now nearly constant since it is now
independent of the particle concentration. The resulting diffusivity
is also roughly constant for the same reason, and lower than what
is needed to maintain a sufficient scale height for the concentration
profile (upper left panel).

6. Discussion and conclusions

6.1. Interpretation of the data

6.1.1. Particle EOM
To test the validity of the EOM, we performed a cross-correla-

tion between the particle acceleration _v and the adopted particle
forces. We found a clear correlation between the particle accelera-
tion _v and the fluid acceleration for the axial direction. Noise in the
data prevented the same comparison to be made in the radial
direction. For the axial direction, and for the current Reynolds
numbers, we found that the fluid acceleration is more important
in the particle EOM than the drag term, demonstrating the signif-
icant added mass forcing at the current particle/fluid material den-
sity ratio of 1.05.

6.1.2. Particle versus fluid stress
If we ignore stress transport and particle–particle interaction,

the modelled radial normal stress of the particles is

v 0yv 0y ¼ sp �lyy:

With drag only, one can show that v 0yv 0y < hu0yu0yi, which is in contra-
diction to the data that show larger particle stress than fluid stress
(Fig. 20). With added mass effects included in �lyy, there is no such
constraint. For symmetric fluid turbulence profiles in the cross sec-
tion (ignoring turbulence modification), the particle stress profile
will also be symmetric according to the local approximation of the
dispersion tensor �lyy. The measured radial stress shows, in contrast,
a clear slope with larger stress near the pipe floor. This observation
suggests that particle–particle hydrodynamic interactions are sub-
stantial enough to provide a clear concentration dependency.

6.1.3. Particle axial stresses
The axial stress is larger than the radial stress (Fig. 20, right pa-

nel), suggesting redistribution of axial stress to radial stress (colli-
sions serve to make the stresses more isotropic). Furthermore, the



Fig. 17. Modelled normal stresses and concentration for Re = 115,000. The key is the same as in Fig. 15.

R. Skartlien et al. / International Journal of Multiphase Flow 35 (2009) 1017–1035 1031
axial stress is more uniform than the radial stress, in terms of rel-
ative variation (compare the left and middle panels). This suggests
that the axial stress is to a large degree generated by the local
fluid–turbulence, providing a more uniform profile. We note here
that stress redistribution is also observed in solids–gas flow (e.g.,
Caraman et al., 2003; Sommerfeld, 2003). Stress transport, wall
interaction, and shear induced stress are also important ingredi-
ents in these flows, where the particle Stokes number is much lar-
ger than in the current setting.

6.2. Model results

To address the observations above, we have implemented a mod-
el based on the kinetic theory for a dilute suspension due to Reeks
(1992). We modified the corresponding Eulerian stress equations
by invoking the collision term of Simonin (2000), that serves to cou-
ple the stress tensor terms, with the effect of reducing the particle
stress anisotropy. To account for long-range hydrodynamic interac-
tions, we adopted an ‘‘effective cross section” of 6d, where d is the
particle diameter. We solved the combined particle momentum
and stress equations in channel flow geometry, to compare with
the pipe flow data. The radial normal stress in the pipe is approxi-
mated by the wall normal stress from the channel flow model.

The wall normal particle diffusivity �yy controls to a large degree
the local scale height �yy=VT of the concentration profile (where VT

is the settling velocity corrected for buoyancy and added mass). It is
found that the particle diffusivity is controlled by the kinetic stress
(the fluid diffusivity contribution via �k plays only a minor role).
The gradient of particle kinetic stress generates a turbophoret-
ic lift, which provides smaller corrections to the concentration
profile. With added mass forcing, there is an additional wall nor-
mal lift due to the direct action of the gradient of turbulence
pressure.

The wall normal kinetic stress that controls the diffusivity, is
generated by a redistribution of axial stress by particle interaction
(lower half of the flow volume), and by the added mass force
(upper half of the flow volume) via �lyy. The drag-force contribution
to �lyy is less important. The source of axial stress is mainly due to
the added mass contribution to �lxx. The stress redistribution serves
to suppress the axial stress, and shear generated axial stress is not
important.

We found that a local approximation of the particle kinetic
stress equations is sufficient, since the transport term can be ig-
nored due to sufficiently small Stokes number (or characteristic
diffusion length). Algebraic relations between the particle and fluid
stresses, including the stress redistribution terms can then be in-
voked, eliminating the need for stress boundary conditions. Only
for larger particle/fluid density ratios are stress boundary condi-
tions necessary (such as droplets in gas modelled by Skartlien,
2009, or solid particles in gas).

Local stress relations, and the influence of added mass effects,
give a wall normal diffusivity in the approximate local form

�yy ’ spðv 0yv 0yÞ ¼ sp

sp �lyy þ sp

sc

rc
3 q2

p

1� sp

sc

rc
2

 !
; ð69Þ



Fig. 18. Modelled normal stresses and concentration for Re = 63,900. No added mass effect. Only the drag-force and collisions are considered in this example. The axial stress,
radial stress and radial diffusivity are underestimated. The radial stress does have the correct slope due to the particle interactions. The key is the same as in Fig. 15.
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where

�lyy ’
�kaa

yy

saa
¼ Q aa

yy
saa

1þ bsaa � aC 00yys2
aa

is due to added mass forcing only, and the term in rc is due to the
transfer of axial to radial kinetic stress.

6.3. Prospects

The current study has demonstrated the applicability of the ki-
netic theory also in cases where (1) the added mass forcing due to
fluid acceleration is important and (2) in ‘‘semi-dense” suspensions
where hydrodynamic interactions are significant. To obtain a fully
self contained model, we would require a separate model for the
acceleration correlation tensors, and the associated correlation
times. This can possibly be achieved by applying the Pope (2002) ap-
proach for the acceleration correlations using the Langevin approach.
The model may also be applied to flows where the added mass term
completely dominates, such as bubble flow or for emulsion droplets.
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Appendix A. Diffusion equation for the particles

The mass flux density is expressed by recasting the momentum
equation (19) in the diffusion equation form

qv i¼��ik@kq�qsp �ci�Fi
� �

�qsp@k v 0iv 0kþ�kki
� �

�spq
Dv i

Dt
; ðA:1Þ

where sp@kðv 0iv 0kÞ is the turbophoretic drift velocity in the i-direc-
tion, D=Dt ¼ @t þ vk@kv i, and the diffusivity tensor �ik enters natu-
rally as a gradient diffusion coefficient. For zero mean velocity,
this equation alone governs the density distribution of the particles
via a first order equation with variable coefficients, when the kinetic
stress and the dispersion tensors are given.
Appendix B. Force correlation functions in local form

B.1. Drag contribution

The two-point drag-force correlation is

hdidki ¼ b2hu0iu0ki: ðB:1Þ



Fig. 19. Modelled normal stresses and concentration for Re = 63,900. No collisions. Only the drag-force and added mass is considered in this example. The radial stress is
underestimated and symmetric due to the absence of particle interaction. The resulting diffusivity is also roughly symmetric for the same reason. The key is the same as in
Fig. 15.

Fig. 20. Measured fluid and particle normal stresses for Re = 63,900. Symbols represent the particle stresses and lines the fluid stresses. The left panel shows the radial
stresses and the middle panel the axial stresses. The particle stresses are larger than the fluid stresses due to added mass forcing (fluid acceleration). The radial and axial
particle stress are compared in the right panel. The axial particle stress is larger than the radial particle stress and the model shows that axial stress is transferred to radial
stress via hydrodynamic particle–particle interaction.
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The local approximation assumes the following form:

Rdd
ik ¼ hdidki ¼ b2hu0iðxÞu0kðxÞie�ðt�sÞ=s; ðB:2Þ

where s is the correlation time of the turbulent velocity fluctuations
as measured along the particle paths, and b2hu0iðxÞu0kðxÞi ¼ Qdd

ik is the
local single-point correlation. It is assumed that the same correla-
tion time applies to all combinations of velocity components.

B.2. Combined drag – added mass contribution

From the Navier–Stokes equation, we obtain the fluctuating
fluid acceleration

Du
Dt

� �0
i

¼ Du
Dt

� �
i

� Du
Dt

� �
i

¼ ðB:3Þ

@tu0i þ uj@ju0i þ u0j@j�ui � @ju0iu
0
j ¼ ðB:4Þ

f 0i =q� @ip0=qþ mr2u0i: ðB:5Þ

In statistically stationary flow, the cross terms (44) become

hdiaki þ haidki ¼ab u0k
Du
Dt

� �0
i
þ u0i

Du
Dt

� �0
k

	 

¼ ab u0k

Du0i
Dt
þ u0i

Du0k
Dt

	 

þ abhu0ku0j@ j�uii þ abhu0iu0l@l�uki þ abA; ðB:6Þ

where (ignoring hu0i@tu0k þ u0i@tu0ki)

u0k
Du0i
Dt
þ u0i

Du0k
Dt

	 

¼ �ujhu0k@ju0i þ u0i@ju0ki þ hu0iu0j@ju0k

þ u0ku0j@ju0ii þ hu0i½ujðxpÞ � ujðxÞ�@ju0ki; ðB:7Þ

A ¼ hu0k@ju0ju
0
ii þ hu

0
i@ lu0lu

0
ki: ðB:8Þ

We note that for s ¼ t, we recover terms in the standard (single
point) Reynolds stress equation. That is, for xp ¼ x,

u0k
Du
Dt

� �0
i
þ u0i

Du
Dt

� �0
k

	 

¼ �uj@ jhu0iu0ki þ @jhu0ju0iu0ki

þ hu0ku0ji@ j�ui þ hu0iu0ji@j�uk; ðB:9Þ

where the angle brackets for ensemble averaging over particle
positions reduce to local ensemble averages, which again can be
replaced by time averages. The remaining terms vanish since
the average fluctuation is zero (therefore A ¼ 0) and
½ujðxpÞ � ujðxÞ� ¼ 0.

We make the following hypothesis to conform to local homoge-
neity: The two-point correlations in (B.6) can be expressed in
terms of a time dependent exponential decay of the local single-
point correlations in the local form (B.9). For strictly homogeneous
turbulence, the single-point advection and flux divergence in (B.9)
vanish. Only the production term remains, and we adopt the fol-
lowing local approximation:

hdiaki þ haidki ¼ ab hu0ku0ji@j�ui þ hu0iu0ji@j�uk

� �
e�ðt�sÞ=sad ; ðB:10Þ

where sad is a suitable correlation time of the two-point correlation
function between the added mass force and the drag-force.

In the case of homogeneous turbulence with shear due to a
mean velocity in the x-direction, the components read

hdxaxi þ haxdxi ¼ 2ab hu0xu0yi@y�ux

� �
e�ðt�sÞ=sad ;

hdxayi þ haxdyi ¼ ab hu0yu0yi@y�ux

� �
e�ðt�sÞ=sad ; ðB:11Þ

hdyayi þ haydyi ¼ 0:

For components involving the spanwise direction z,
hdxazi þ haxdzi ¼ ab hu0zu0yi@y�ux

� �
e�ðt�sÞ=sad ;

hdyazi þ haydzi ¼ 0; ðB:12Þ
hdzazi þ hazdzi ¼ 0:
B.3. Added mass contribution

The two-point (non-local) correlation function of the added
mass force can be written

haiaki ’ a2 h@tu0i@tu0ki þ h@ jðujuiÞ0@lðulukÞ0i
� �

; ðB:13Þ

where ðujuiÞ0 ¼ ujui � ujui is the stress fluctuation in the fluid. For
the diagonal elements i ¼ k and for j ¼ l, the correlation is clearly
positive. We may adopt an order of magnitude estimate directly,

haiaki � a2 hu0iu0ki
ŝiŝk

e�ðt�sÞ=saa ; ðB:14Þ

where ŝi is a characteristic time for the fluid acceleration Dui=Dt.

Appendix C. Green’s function for the EOM

The displacement Greens function is needed to calculate the
dispersion tensors. The particle displacement in the i direction
due to an impulsive force applied in the j direction is, in the pres-
ence of a mean force and a simple drag coefficient without lift, gi-
ven by the solution of the system of equations (e.g., Hyland et al.,
1999)

€Gji þ b _Gji � Gjk@kFi ¼ dijdðt � sÞ; ðC:1Þ

where dij is the Kronecker delta. In channel flow, the mean force
varies only in y, such that Gjk@kFi ¼ Gjy@yFi. For the force gradients,
we get

@yFx ¼ b@yhuxi þ a@2
yhu0xu0yi 
 bSþ aC 00xy ¼ B1; ðC:2Þ

@yFy ¼ a@2
yhu0yu0yi 
 aC 00yy ¼ B2: ðC:3Þ

The initial conditions are

Gijð0Þ ¼ 0; ðC:4Þ
_Gijð0Þ ¼ dij; ðC:5Þ

where _Gij ¼ @tGij. These conditions follow from the Dirac delta func-
tion forcing of the diagonal elements Gii. The first conditions simply
states zero displacement at time zero. The resulting Greens function
components (that are needed here) are

Gxx ¼ b�1ð1� e�btÞ; ðC:6Þ
Gyy ¼ ðDbÞ�1ðem2t � em1tÞ; ðC:7Þ

Gyx ¼
B1

bDB2
ðem2t � em1tÞ � Dð1� e�btÞ
� �

; ðC:8Þ

Gxy ¼ 0; ðC:9Þ

where

m1 ¼ �
b
2
ð1þ DÞ; ðC:10Þ

m2 ¼ �
b
2
ð1� DÞ; ðC:11Þ

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2C00yy

q
; ðC:12Þ

g ¼ 4a
b
: ðC:13Þ

The Gyx component expresses the streamwise particle displacement
due to a force in the vertical direction (due to the mean shear). Both
Gyx and Gyy are influenced by the added mass contribution to the
mean force (via D and the Reynolds stress gradients).
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Appendix D. Calculation of the dispersion tensors

The two forces (added mass and drag), give three contributions
to each of the three dispersion tensor components. In general,

�kjiðyÞ ¼
X

m

X
n

Z 0

�1
Rmn

ik ðy; t; sÞGkjðt � sÞds

¼ ð�kjiÞdd þ ð�kjiÞad þ ð�kjiÞaa: ðD:1Þ

By invoking the local form (47), one obtains

�ljiðyÞ ¼
X

m

X
n

Z 0

�1
Rmn

ik ðy; t; sÞ _Gkjðt � sÞds

¼ ð
�kjiÞdd

s
þ ð

�kjiÞad

sad
þ ð

�kjiÞaa

saa
: ðD:2Þ

Green’s function Gkj for the EOM is given in Appendix C. The two
drag-added mass contributions (ad and da) are merged into one dis-
persion tensor.

For the dispersion vector component �cy, we adopt the passive
scalar approximation – PSA (Skartlien, 2007),

�cy ¼ �@yð�kyyÞ: ðD:3Þ

This approximation assures the correct behavior for the momentum
equation in incompressible flow in the limit of small particle Stokes
number. We can take �cx ¼ �cz ¼ 0 since the turbulence inhomogene-
ity is only felt in the y-direction, perpendicular to the channel walls.
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